Page 29 - MetalForming November 2017
P. 29

 Intricate cut patterns, such as the one shown here, are possible through higher-velocity, thin-diameter waterjet streams, concentrating the cut area and allowing more cutting power from a given amount of abrasive.
parts produced per hour and more jobs completed per day. Thus, high-pres- sure-capable waterjet-cutting machines prove their worth for high-production environments and fast-turnaround requirements.
Higher pressure also enables greater cutting detail due to the smaller stream diameters, making the process ideal for applications requiring precision parts. A smaller stream enables more intricate inside-corner cutting, for example.
Pressure delivers productivity due to jet velocity. As pressure increases, so does the velocity of the waterjet stream. Once the stream exits the ori- fice, it has no pressure, as the pressure has been converted to velocity. Faster and smaller waterjet streams mean faster-moving abrasive particles that carry more momentum, and remove more material more aggressively. High- er-velocity streams require less abrasive per length of cut because each abrasive grain can remove more material. The goal is to make the abrasive move as quickly as possible, so stream velocity is the key to efficiency. The only way to make a waterjet stream go faster is to raise pressure, not increase horse- power. Every waterjet pump has a max- imum operating pressure, so to gain the benefits of a higher velocity stream, users need a pump designed to operate at higher pressure.
Here’s an example of improved effi- ciency through velocity. The abrasive consumption of a 60,000-psi pump running at 50 hp is the same as a 87,000-psi pump running at 100 hp. The difference: With the higher-pres- sure pump, the stream—and thus the abrasive—travels much faster and cuts at approximately twice the speed. This means that garnet use is decreased by half per minute of operation, and even less per inch of cutting length, making the higher-pressure pump more effi- cient than its lower-pressure counter- part. MF
Information for this article was sup- plied by Flow International Corp., Kent, WA; tel. 800/446-3569, www.flowwa- terjet.com.
the kinetic energy of the abrasive parti- cles contained within the water. As water and abrasive particles move faster, the jet diameter becomes smaller, and the jet’s power density and efficiency increases. Just as increasing wattage increases productivity in CO2 laser cut- ting, increasing pressure significantly improves waterjet productivity.
Beyond the approach of raising pressure, many other alternatives to improve productivity have been attempted: increasing the horsepower, running multiple heads, using very aggressive abrasives and optimizing tool paths, to name a few. Of these, the only improvement that has held true is the optimizing of tool paths. Today, advanced waterjet-machine tools have tool-path optimization— speeding up on straight lines and slow- ing down on tight geometry—to con- trol finished part anomalies caused by stream lag and ultimately shorten part cycle times. More advanced setups offer taper compensation where an articulated wrist tilts the cutting head slightly to compensate for the naturally occurring V-shaped taper produced by waterjet cutting.
The other attempts did not pro- duce efficiency gains for several rea- sons. Increasing horsepower results in faster cutting, but demands a pro- portional amount of additional abra- sive, which adds costs. Adding heads splits the power between the heads, doing little for throughput and requir- ing the operator to ensure that all heads are cutting at precisely the same level. Using more aggressive abrasive increases operating costs by virtue of the high abrasive cost and also the rapid erosion of the mixing tube nozzle. In these cases erosion has been shown to occur five to 10 times faster.
Pressure Delivers Efficiency
In simple terms, raising pressure improves efficiency—speeding up cut- ting and reducing cost per inch. At 60,000 psi, garnet abrasive accounts for more than half of a machine’s oper- ating cost. Running continuously at 87,000 psi, the abrasive cost falls to less than half. Pierce time, the amount of time needed to drill a start hole, falls dramatically as well. The net result: shorter cycle times, meaning more
www.metalformingmagazine.com
MetalForming/November 2017 27






















































































   27   28   29   30   31