Page 31 - MetalForming January 2010
P. 31

 per monitoring towers incorporating sensors. The sensor cables were carefully buried within the tooling and routed to the centralized connector box as seen in the upper left of the photograph.
Die T-89 Payback:
1) The average die speed increased by 25 percent.
2) The die runs unattended without constant operator vigilance or attention. Parallel Press Enhancements: To maximize the running speeds of fully sensored dies, a careful study was done to assess the stopping times of the press- es that were used to run the newly mint- ed die sensor applications. It was deter- mined that the brakes on the presses were not fast enough to halt the die at fast running speeds—even though the electronic sensors detected a problem. This was solved by augmenting the braking mechanisms with secondary brake installations that dramatically shortened their stopping times. Thus the full-sensored dies now could be run on these presses at maximum safe run-
ning speeds.
Fehr notes that, “We have done brake
upgrades on five presses, and are plan- ning to do a sixth one this holiday sea- son. Our press number 7, a 150-ton Clearing, saw its speed increase from 60 to 75 strokes/min. after a brake upgrade. These facts and the supporting data are always tested and confirmed to be safe before the die information is passed on to production.”
Last-Minute Takeover Tandem Line Dies: This can be a nightmare. Imagine taking over a product line with H pillar automotive parts that require several tandem presses with robotic pick and place systems and only a few days to actually produce parts to specifications, on time and at a competitive price. Now imagine having in place to receive this takeover job a tandem press line with some of the most sophisticated auto- mated tooling changeover mechanisms that I have ever seen in my decades of
Fig. 3—One-Finger Quick Die Change
global consultations and plant visits. Such a system, one fully developed and saturated with inhouse designed and implemented electronics resides at Mar- wood. Steve Spanjers, vice president of operations at Marwood, relates the fol- lowing story:
“The dies arrived at the plant on Friday, October 16, 2009, at noon. We built the necessary support tooling and sensored the dies throughout the week- end, set up and programmed on Mon- day and shipped 5000 parts on Tuesday, October 20 at 9 a.m. In the first few weeks (bank included), we built 43,033 of each side while still satisfying all other existing customer orders on the tandem line. We spent $0 on the EOAT and $530 for the die sensing. We were able to get the speed of the line to 8.1 strokes/min. before Monday night at 5 p.m. Our average running speed for the line is 7.25 strokes/min. with the best at 9 strokes/min. This takeover job now runs at a consistent 8.1 strokes/min. The blank weighs almost 16 lb. and our average changeover time is 62 min. with the fastest ever at 29 min.”
Time after time I have seen forward- thinking and technology-based metal- forming companies such as Marwood Metal Fabrication revisit their existing processes, and reinvent their approach- es to basic metal stamping and assem- bly. Fully armed with the best mecha- tronics thinking, it took a 150-ton Komatsu press that was being used for hand-transfer operations, rethought QDC approaches and implemented them in that press. First it incorporated strong permanent magnets made by Tecnomagnete on both the upper and lower bolsters. It then took this one-sec-
ond clamping/unclamping technology and incorporated it into a fully auto- mated QDC system. These bolsters are connected to one another in a train-like configuration. During die changeover, the bolsters are air lifted and air shuttled into and out of the press. The entire process is activated via an inhouse, cus- tom-designed control system activated with one-finger buttons. The average full changeover time is 90 sec., includ- ing the auto shut-height adjustment. The dies that run within this system are fully electronically sensored. To overcome the need for manual sensor cable changes, a wireless sensor interface was incorporated, eliminating the need to run sensor cabling from the bolsters to the press.
Fig. 3 shows a die within the press that had just completed its run. To the right is a die with the magnetic bolsters pre-attached and waiting to be shuttled into the press once the previous die is removed and returned to its staging position—left of the press. The system is fully automatic and requires only one finger to actuate and control. To see how this revolutionary quick-die- change process works, go to www.you- tube.com/watch?v=ef_44PXCtsM, where the process can be clearly seen and understood.
For nearly 25 yr., I have been encouraging the metalforming com- munity to embrace electronics within its tooling and assembly processes. Nothing gives me more pleasure than to see companies such as Marwood Metal Fabrication not only excel but far and away exceed my expectations. Hats off to a truly worldclass metalforming operation! MF
www.metalformingmagazine.com
METALFORMING / JANUARY 2010 29
  

















































































   29   30   31   32   33