

Hot Stamping H Experience A and Tech Tour

Hot Stamping Die Development and Process Simulation (Industrial B-pillar in 1.6 mm Usibor[®] 1500 AS)

November 29-30, 2022 Novi, MI DIVERSIFIED TOOLING G R O U P Superior Can Engine

ArcelorMittal: T. Lim, H. Yao, K. Compton, P. Patel, H. Song American Tooling Center: M. Austin

Content

- Introduction and Objective
- Company introductions
 - ArcelorMittal
 - Diversified Tooling Group
- B-pillar press/tooling
- Initial FEA
- Tooling commissioning and supporting FEA
- Tooling buy-off
- Summary, Future work and Next steps

November 29-30, 2022 I Novi, MI

Introduction / Objective

- ArcelorMittal leading global supplier of press hardened steel (PHS) products
- ArcelorMittal approached American Tooling Center (ATC) as an industrial press technology partner, and commissioned ATC to manufacture a production intent PHS B-pillar tool
- Part selected by ArcelorMittal and tool designed by ATC to represent a challenging part
- Objective is to study stamping conditions and process windows required for good, robust parts for various PHS grades under industrial production conditions
 - Usibor® 1500, Usibor® 2000, Ductibor® 1000, Ductibor® 500
 - Monolithic and same-gauge LWB combinations
- The tool was designed for 1.6 mm Usibor® 1500 AS
- Scope of this presentation commissioning activities and FEA support

November 29-30, 2022 | Novi, MI

About ArcelorMittal

Scale	Sustainability	Innovation
Steel manufacturing in	Group-wide target of	More than
16	Net Zero	100
countries	carbon emissions by 2050	R&D programs in progress
Customers in	Company's number 1 priority	More than
155	H&S	724+
countries	since our formation in 2006	Active patent families
157,909 employees in 2021	69.1 Million tones of crude steel production in 2021	51 New products and solutions launched in 2021

	DIVERSIFIED TOOLING	
	G • R • O • U • P	
9	nd qc	þ
Superior Cam	Midland Design American Tooling Center	Bespro Pattern

November 29-30, 2022 I Novi, MI

ArcelorMittal North American Footprint

DIVERSIFIED TOOLING	
G • R • O • U • P	
nd qc	þ
	DIVERSIFIED TOOLING

November 29-30, 2022 I Novi, MI

Global Research and Development Footprint

11 Geographical sites – 15 Research centres

Presence at customer location on 3 continents

On-site product and process portfolio deployment:

- Product Development Engineers
- Resident Engineers
- Process Development and Deployment Specialists

November 29-30, 2022 I Novi, MI

• O • U •	P
	þ
	sign American Tooling C

November 29-30, 2022 I Novi, MI

DIVERSIFIED TOOLING

Full Service Tool & Die Operations

Superior Cam

Superior Cam has established itself as a technical leader in the Prototype Sheet Metal Industry during the past 46 years. Superior Cam specializes in low volume production parts and assemblies. We have built a reputation as an innovative, experienced and reliable full service operation which emphasizes production intent quality at every step of the tooling process.

Bespro O Pattern

During the past 65 years Bespro Pattern has developed an excellent reputation for quality, timing and competitive prices. We are a respected leader in the CNC machining of poly patterns, wood patterns and urethane patterns off solid CAD die design.

425 Highly Skilled Workers 775,000 Sq. Ft. of Facilities

Midland Design

ПÞ

Midland Design has 50 y experience designing all vehicle sheet metal stam Midland Design is regard leader in the field of "Soli Design." Midland Desig extensive experience ser domestic and overseas with stamping engineerin processing and die desig

American Tooling q Center **Grass Lake**

American Tooling Center state-of-the-art Tool and Our full service operation designed and constructe a world class production which emphasizes a CAI utilization. American To is actively engaged in do and outsourcing tooling of scale for the past 25 yea

vears of types of oping dies. oded as a id CAD Die gn has rvicing customers ng, die gn.	
C	
r is a modern Die facility. n was ed in 1992 as die facility D/CAM/CNC oling Center omestic build on a global ars.	

November 29-30, 2022 | Novi, MI

Full Service Tool & Die For Stamping

Midland Design Service

- •Cad Draw Developments
- •FEA Simulation
- •Die Process
- •Solid CAD Die Design Cold & Hot Stampings.

(Catia, Unigraphics)

•Hot Stamping Simulations

Bespro Pattern, Inc.

- •Solid Modeling
- •Solid Pattern Design
- •CNC Machined Patterns
- •Foundry (Outside Sourcing)

November 29-30, 2022 I Novi, MI

DIVERSIFIED TOOLING

Full Service Sheet Metal Prototype & Low Volume Production

Superior Cam, Inc.

- Prototype Parts
- •Prototype Assemblies
- •Low Volume Production
- •Low Volume Assembly
- •Low Volume Robotic Welding
- •Low Volume Robotic Roller Hemming
- •Low Volume Production Door Assembly

November 29-30, 2022 | Novi, MI

DIVERSIFIED TOOLING G C R C O U C P FUI Service Tool & Die For Stamping

American Tooling Center

- •CNC Programming
- •CNC Machining
- •Die Assembly
- •Die Tryout
- •Die Buyoff
- •Quality / Inspection
- •Home line Support
- •Hot Stamping Dies & PHS Press Validation
- •Certified PHS Laboratory

B-pillar - Part / Press / tooling

November 29-30, 2022 I Novi, MI

B-pillar Part

1.6 mm Usibor[®] 1500 AS

AP&T Press Cell

- 12,000 kN open loop hydraulic press
 - Servo controlled hydraulic pumps to provide press force
 - Servo controlled valves to control velocity, force, and other variables in the press process.
- Previously used for low volume supply of hot stamped parts
- Authorized production press to several automotive OEMs

November 29-30, 2022 I Novi, MI

Tooling Components and Assembly

Not intended for large volume production

November 29-30, 2022 I Novi, MI

Press Build Up

November 29-30, 2022 I Novi, MI

Cooling Water Channels

November 29-30, 2022 I Novi, MI

Pads are set 85 mm from home

Slide velocity 94 mm/s 85 mm from home

• Slide velocity 50 mm/s from 3.5 mm to home

November 29-30, 2022 I Novi, MI

Gap Pad/Force Pad Functioning

- Lower gap pad standoff cylinders maintain a upper cylinder.
 - Wrinkles heights are limited to 3.5 mm
 - Embossments are prevented from forming

- At 3.5 mm to home, upper cylinder is "stroked out" overcoming the lower cylinders, and the gap closes to home with the slide
- Force pad, no opposing cylinders, pad set with mm from home

t+3.5 mm gap, 85 mm from home, compressing

481 kN force (no extra gap) when the slide is 85

November 29-30, 2022 | Novi, MI

Process

- "Pizza" oven type furnace, 300 s soak time , 930°C
- 12 s for blank transfer
- 7 stage press program

	Speed		mm/s
Max			+640.0 800.0
Manual			+56.0
Return to home por	sition		+56.0
Start value in seque	ence		+0.0
Sp	eed in seque	nce	
Step	Advanced Position	mm/s	~
2		+640.0	
3		+94.0	
4		+50.0	
		100.0	
		+140.0	
6		+50.0	
		+600.0	
No			
no.	mm	mm/s	mm/s ²

November 29-30, 2022 I Novi, MI

Initial FEA for 1.6 mm Usibor® 1500 AS

November 29-30, 2022 I Novi, MI

AutoForm – quicker turnaround

November 29-30, 2022 | Novi, MI

Tooling Commissioning and ArcelorMittal supporting FEA – AutoForm and PAM-STAMP

- PAM-STAMP FEA also performed by ATC and ESI to support activities
- ArcelorMittal results are shown in this presentation

November 29-30, 2022 Novi. MI

Initial Trial on New Tools: FEA Using Concept CAD vs. Actual CAD

• FEA should be used to check production tools

November 29-30, 2022 | Novi, MI

Gap Pad Operation Failure

- Unknown at the time upper cylinders were overcoming the lower cylinders (gap was closed)
- The result was excessive thinning in the wall of the part (Loc 12)
- Remedy The cylinder configuration was changed (new cylinders added, the old configuration is shown for illustration). Lower cylinders are not overcome by the upper

November 29-30, 2022 Novi, MI 25

Gap Pad Operation Failure Diagnosed with FEA

AutoForm Sigma – 32 Runs

• AutoForm Sigma:

- Influence: Gap (spacing) has a greater effect on thinning than friction in Loc 12
- Dependency: thinning as a function of die gap
- At a die gap of ≈ 0.2 mm, thinning in AutoForm is more than -0.20
- AutoForm and PAM-STAMP FEA predicted thinning to be more than -0.20 at small gap.
- Proposed cause for splitting smaller than expected die gap

November 29-30, 2022 | Novi, MI

Gap Pad Operation Failure Diagnosed with FEA

- Requested breakdown panel 3.5 mm from home, and it showed embossment formation
- Simulation predicts no embossment formation if gap pad is working correctly
- Embossment formation predicted for gap pad failure (smaller than expected gap) matches breakdown panel
- The gap pad cylinder configuration was changed as stated previously

November 29-30, 2022 | Novi, MI

- The tool gap was too narrow at the base of the B-pillar. The tool shop quickly diagnosed and corrected this
- AutoForm simulations could illustrate this problem using thick shell elements

November 29-30, 2022 Novi, MI

Press "Recipe" Tuning

Press Trace: 1300 mm set point

- Forming velocity is not constant, as is often assumed in FEA simulations
- Press stage/step setting (distance off bottom set point) affects forming velocity

ulations rming velocity

November 29-30, 2022 I Novi, MI

Press "Recipe" Tuning

Press Trace: 1302 mm set point

Change in setting results in higher forming velocity – more desirable since it reduces thinning

November 29-30, 2022 | Novi, MI

Press "Recipe" Tuning

FEA insight – Lower slide velocity results in more cooling at radii and localized thinning

	DIVERSIFIED TOOLING	
-	G · R · O · U · P	
Superior Cam	Midand Design American Tooling Cent	

November 29-30, 2022 | Novi, MI

AutoForm 3D Simulations

- Potential tool for evaluating hot spots, cooling channel design
- ATC designed channel system (much work in optimizing)
- 100 mm solid element tooling in AutoForm
- Cycle (cumulative time):
 - Start t=0 s
 - Tools home (end of forming) = 3.46 s
 - Quenching (10.02 s) =13.46 s
 - Tool opened (3.06 s) = 16.54 s
 - Wait for next blank (33.9 s) = 50.44 s

November 29-30, 2022 | Novi, MI 32

Steady State Tool Temperatures

- Simulations using tooling CAD
- Predicted tool temperatures reach steady state at about 7 cycles/parts (76 77°C in the punch)
- Recommended to run 7 parts to warm up the tool immediately prior to buy-off trial

Lower Punch – with cooling channels

November 29-30, 2022 Novi, MI

Tooling Temperature Distributions

FLIR Tool image

AutoForm

Fairly good agreement

November 29-30, 2022 I Novi, MI

Part Temperature Distributions

AutoForm simulations predicts areas of higher temperatures in the part

November 29-30, 2022 Novi, MI

Tooling Buy-off Trial

November 29-30, 2022 I Novi, MI

42 Piece Run for Tooling Buy-off

- 7 pieces run to "warm up" tools/press
- Additional 42 pieces run
- Blank heating to 930°C soak for 300 sec
- Blank transfer time
 - 750 °C blank temperature on tool
- <u>Trial Data</u>
 - Part temperatures (spot pyrometers):
 - BT1, BT2 blank temperature just before forming
 - BT3, BT4 part temperature just after quenching
 - Thinning was measured in the walls for locations 12, 13
 - Sub-size tensile tests performed

Nominal Cycle Time	
Stage	Time (sec)
Start: Blank on tool (blank actually sits on tool and it takes bout 1.1 s fir the first contact by the upper die)	0
Total Motion down (home)	3.56
Quench time	9.97
Tool opened	3.95
Wait for new blank	30.5
Total	48 sec

November 29-30, 2022 I Novi, MI

Buy-off Trial Press Data

- Press data collected for each press stroke
- Semi-automatic analysis (Python script)
 - Slide displacement/velocity
 - Time for forming/quenching
 - Quench force
 - Cycle times •
 - And more
- 42 spreadsheets, \approx 9000+ entries per sheet

November 29-30, 2022 | Novi, MI

Buy-off Trial Press Data

	Cycle Time (s)	Oven Temp (°C)	Transfer Time (s)	Part Temp start, on tools (BT1, °C)	Quench time (s)	Part Temp, tool opening (BT4, °C)	Press Tonnage (kN)	350 300 250 200	
Med	48.5	933.0	12.1	753.5	9.98	122.5	3589	150	
Min.	45	931.4	12.1	747.0	9.95	103	3558	100	
Max.	56	936.8	12.2	756.0	10.01	132	3626	50	

Slide/Upper die velocity is not constant as often used in FEA

Buy-off Trial Tooling Scans (STL)

- STL (blue light scan) data of tools are different from CAD
- Gaps, interference will affect forming/quench pressure
- More accurate to use STL scan data for tools in FEA

November 29-30, 2022 I Novi, MI

Buy-off Trial Part Data (n= 5 parts)

Formability is safe, mechanical properties, dimensional performance are acceptable

TS(MPa)		TE	(%)
alls	Flat areas	Walls	Flat areas
10	1495	6.1	6.8
60	1460	5.4	5.3
60	1520	6.9	7.2

November 29-30, 2022 Novi. MI

Buy-off Trial Part Data Part Temperature vs. Stroke Mean Forming Velocity vs. Stroke 135 115 (mm/s) 130 Part Temp. (deg C) 120 112 112 110 d/t, 105 Mean velocity 100 95 110 90 105

40

10

0

Part temperature increases slightly with each stroke/part

10

20

Press Stroke or Part#

25

30

35

40

- Mean forming velocity increases (forming stroke distance / forming time) conversely time to form the part decreases
- Thinning magnitude in Loc 13 increases

5

Thinning in loc 12 was random with press stroke (not shown)

20

Press Stroke or Part#

-0.09

-0.10

-0.11

-0.12

-0.13

Thinning

Thinning in Loc 13 vs. Stroke

Press Stroke or Part#

November 29-30, 2022 Novi. MI

PAM-STAMP FEA Using Constant Velocity Assumption and Tooling CAD

FEA predicts different location of maximum thinning vs. the buy-off trial

November 29-30, 2022 I Novi, MI

PAM-STAMP FEA using STL, Actual Press Slide Velocity Curves - Better Thinning Predictions

- Part Data, Buy-off Trial:
 - Maximum thinning , mid-wall location 13
 - Max thinning at Loc 13 increases from -0.087 (Part#4) to -0.137 (Part#40)
- FEA using actual velocity curves (Part#4, Part#40):
 - Matches the location of maximum thinning from the trial
 - The thinning trend from the trial is reproduced in the FEA

November 29-30, 2022 I Novi, MI

PAM-STAMP Thinning using STL, Calculated Average of **Press Slide Velocity Curves**

location, and trial values

November 29-30, 2022 | Novi, MI

PAM-STAMP FEA using STL, Measured Press Slide Velocity Curves: Quenched after 10 s, 3600 kN

- The part is > 97% martensite, in alignment with the good mechanical properties from the trial
- The effect of tooling gap in the walls in the scanned (STL) tools is reflected in the simulation quenched results

es from the trial the simulation quenched

November 29-30, 2022 I Novi, MI

Distortion Relative to the Scanned Tooling

- PAM-STAMP, min/max predicted distortion magnitudes are less than that seen in the trial
- Also, the pattern of distortion is different than that seen in the trial

November 29-30, 2022 Novi, MI

Summary, Future Work and Next Steps

November 29-30, 2022 I Novi, MI

Summary

Benefits of FEA simulation of tooling commissioning demonstrated in: lacksquare

- Assessing production intent tooling CAD vs. concept CAD
- Diagnosing gap pad failure ${}^{\bullet}$
- Assessing the effect of misalignment
- Aid to making decisions for the press "recipe"
- 3D thermal simulations show promise to determine hot spots on tools. Work is needed to develop capability to examine hot spots on the part

• Tooling buy–off:

- Good parts made using 1.6 mm Usibor® 1500 AS
- Able to measure press stroke variations (slide velocity, quench force, timing)
- Good agreement between simulation and trials, \bullet
 - FEA predictions for thinning were more in agreement with the trial results when actual velocity curves from the trial were used in the simulation instead of assumed constant velocity.
 - Predicted martensite fraction in-line with good mechanical properties measured in parts from the trial
- Predicting part distortion (with FEA) is a challenge as results did not match that in the trial

November 29-30, 2022 I Novi, MI 49

Next Steps

- Model stamping process noise effects on stamped product consistency
 - Development of FEA robustness (Monte Carlo) simulations of the hot stamping process incorporating process variation
 - Net shape hot stamping modeling, stability of the part edge with respect to holding part tolerances.
- Ongoing process window for new grades, new coatings etc.
- FEA modeling ongoing improvement:
 - Development and validation of material cards, and prediction of mechanical properties
 - Improve understanding of heat transfer and part distortion

	DIVERSIFIED TOOLING	
9		6
Superior Cam	Midland Design American Tooling Center	Bespro Pattern

November 29-30, 2022 | Novi, MI 50

Questions, Remarks?

Parth Patel P.Eng, Project Manager-PHS ArcelorMittal, Global Research and Development parth.patel2@arcelormittal.com

Mike Austin, Director - Manufacturing Engineering Diversified Tooling Group, Inc. maustin@diversifiedtoolinggroup.com

November 29-30, 2022 I Novi, MI