

5TH OCTOBER 2016

Servo Press Technology

& Return on Investment

By Barry Lewalski

Sales & Product Manager Servo Press Systems

SERVODIRECT TECNOLOGY

OVERVIEW

- DIFFERENCES BETWEEN CONVENTIONAL AND SERVO PRESS TECHNOLOGY
- FEATURES AND BENEFITS OF SERVO PRESSES
- COMPARISON OF STROKE PROFILE
- CASE STUDIES AND RESULTS

SERVO DIRECT TECHNOLOGY

DIFFERENCES COMPARED TO CONVENTIONAL

Mechanical Press

- No clutch / brake assembly
- No flywheel
- Less efficiency

Servo Press

- Highest motor efficiency
- Speed of press is Programmable
- Programmable stoke length

ServoDirect drive

SERVO DIRECT TECHNOLOGY DRIVE CONCEPT

- Direct drive concept
- Use of highly dynamic torque motors
- Time-travel profiles are user-programmable
- Setup and tryout functions
- Stroke length is user-programmable (pendulum motion)

ServoDirect drive with 2 torque motors

PREVIEW ADVANTAGES OF SERVO PRESS TECHNOLOGY

- Servo Motion Increases SPM Output: by adjusting stroke lenghts and slide motion curves
- Maximum production flexibility: by optimizing the process and forming motion curves.
- Shorter setup times for toolings: by using the features of the servo tryout function
- Increase part quality and die lifetime: through optimization of the forming process
- Lower energy costs: through an efficent energy management system
- Lower costs per part ratio: by increasing the spm part output

SERVO DIRECT TECHNOLOGY VS CONVENTIONAL PRESS FULL STOKE PENDULAR MOTION FOR INCREASED PRODUCTION RATE

PRACTICAL EXPERIENCE : 250 - 800 TON

INCREASED PRODUCTION RATES WITH EXISTING PROGRESSIVE DIES

Formed part	Operating mode	Press force [kN]	Drawin g depth [mm]	Max. stroke rate Conventional [spm]	Max. stroke rate Servo [Spm]	Increase
Flange	Progressive	2,500	30	30	56	87 %
Gas generator holder	Progressive	2,500	60	25	40	60 %
Holder	Progressive	2,500	40	30	60	100 %
Cage	Progressive	4,000	50	30	50	67 %
Gripper rail drive unit	Progressive	8,000	65	20	40	100 %

PRACTICAL EXPERIENCE : 1,100 – 2,500 TON

INCREASED PRODUCTION RATES WITH EXISTING TRANSFER & PROG DIES

Formed part	Operating mode	Press force [kN]	Drawing depth [mm]	Max. stroke rate Conventional [spm]	Max. stroke rate Servo [spm]	Increase
Cover	Progressive	11,000	40	15	34	126 %
Center console	Transfer	11,000	190	12	17	42 %
Insert cup	Transfer	11,000	130	8	15	88 %
Cross plate	Progressive	16,000	90	23	33	43 %
Tank filler neck	Transfer	16,000	145	14	18	29 %
Side panel	Transfer	16,000	80	19	29	53 %
Geared ring	Transfer	16,000	45	15	21	40 %
Seat part	Transfer	25,000	130	16	24	50 %

5TH OCTOBER 2016

ServoDirect Technology:

Transfer or Prog-die?

SERVODIRECT TECNOLOGY: TRANSFER OR PROG-DIE?

AGENDA

- ADVANTAGES OF BOTH TRANSPORT PRINCIPLES
- REQUIREMENTS ON PRESS-LINE LAYOUT
- DECISION MAKING PROCESS
- IMPORTANCE OF HIGHEST FLEXIBILITY
- CONCLUSION

TRANSFER – PROGDIE COMPARISON OF THE ADVANTAGES

PRESS-LINE COMPONENTS

DECISION MAKING PROCESS

THERE IS ONE AND ONLY ONE RESPONSIBILITY OF BUSINESS: TO USE ITS RESOURCES AND ENGAGE IN ACTIVITIES DESIGNED TO INCREASE ITS PROFITS SO LONG AS IT STAYS WITHIN THE RULES OF THE

GAME. – MILTON FRIEDMAN, ECONOMIST; 1976 NOBEL PRIZE IN ECONOMIC SCIENCES

PROFITABILITY

Is achieved and increased through an total view on the machine and die technology based on apropriate machine settings.

APPROPRIATE FORMING PROCESS USING CONVENTIONAL TECHNOLOGY

→ NO FELXIBILITY AND RIGID PROCESS CHARACTERISTIC

Slide stroke characteristic determined and fixed through the mechanical drive design

PROCESS-FOCUSED VIEW ON SDT SERVO PRESS TECHNOLOGY OPTIMIZED PROCESSES THROUGH SDT SERVO DRIVE

→ HIGHEST FLEXIBILITY AT OPTIMAL PROCESSES

Slide stroke characteristic and stroke height is freely programmable

15

CONCLUSION : FOR BEST RETURN ON INVESTMENT

- Optimal match of the process, material and part shapes.
- Production at the highest possible rate
- Transfer or Progdie decison is made based upon the most profitable process

SERVO TECHNOLOGY

Decision for a flexible press line

5 TH OCTOBER 2016

SERVO TECHNOLOGY

Die Design for Servo Presses

DIE DESIGN FOR SERVO PRESSES

AGENDA

- REASON FOR NEW NEEDS ON DIE DESIGN
- EFFECTS WITH PENDULAR STROKE
- EFFECTS THROUGH HIGHER VELOCITY
- IT-TOOLS FOR DIE-DESIGNERS
- TRANSPORTATION SIMULATION WITH DIGISIM
- CONCLUSION

REASON FOR NEW NEEDS ON DIE DESIGN

- HIGHER OUTPUT
- PROFITABLE PROCESS FOR TRANSFER OR PROGDIE ON THE SAME MACHINE

PROGRAMMABLE SLIDE VELOCITY FOR THE FORMING AREA TO IMPROVE PART QUALITY AND REDUCE DIE WEAR AND HEATING

REASON OF HIGHER OUTPUTS WITH SERVO TECHNOLOGY SDT

OUTPUT INCREASE AT SERVO PRESSES

1. PARTIAL CUSTOMIZED SLIDE VELOCITY

→ PROCESS-BOTTLE NECK DOES NOT DEFINE THE THE MAXIMUM SPEED FOR THE WHOLE PROCESS

SERVO-DESIGNED DIES

• 1. PRINCIPLE – GUIDANCE PILLAR LENGTH ON THE SAME LEVEL → AS SHORT AS POSSIBLE

• 2. PRINCIPLE – GRABBING HEIGHT OF THE PART ON THE SAME LEVEL

EFFECT OF THE PENDULAR MODE ON CLEARANCE

Pendular stroke = 300mm slide stroke

- Higher output
- Less clearance →
- Dies design enabling lower stroke heights

CONCLUSION – DIE DESIGN. SERVO DIE DESIGN CONSIDERS:

- Reduction of guidance length
- Reduction of mass
- Damped moveable elements
- Usage of standard parts bearing higher velocities
- Interference curves for the specific forming part

...Increase performance and higher outputs

5 $^{\text{TH}}\,$ October 2016

SERVO PRESS TECHNOLOGY & RETURN ON INVESTMENT

Part Analysis and Part Cost

Support Part Output Efficiency

AGENDA

PROCESS MANAGEMENT – HOW WE CAN SUPPORT

IDEAL PART AND PRODUCTION PROCESS

PART CALCULATION

ECONOMIC EFFICIENCY AND PROFITABILITY

Support Part Output

THE SCHULER SUPPORT PACKAGE

Efficiency

Consulting

Production Die testing

Part Calculations

IT-Solutions

Tool Tryout and Start Up – Back-Up Production

Production Support

Aug 19th 2016 Part Analysis and part Cost

Process Optimization

Training and Workshops

© COPYRIGHT SCHULER PRESSES – BU INDUSTRY

Part

Output Efficiency

EFFICIENT PROCESS CHAIN

Support Part Output Efficiency

AGENDA

PROCESS MANAGEMENT – HOW WE CAN SUPPORT

IDEAL PART AND PRODUCTION PROCESS

OPTIMUM DIE DESIGN AND SIMULATION

OUTPUT OPTIMIZATION

ECONOMIC EFFICIENCY AND PROFITABILITY

Part

Support

Output Efficiency

BASIC DATA OF SAMPLE PART

Material	DC04
Size	900 x 900 x 50
Thickness	1.5
Production quantity per year in piece	500,000
Material costs per metric ton in	\$ 750

Aug 19th 2016 Part Analysis and part Cost

Support Part Output Efficiency

STEP 1: FEASIBILITY STUDIES, METHOD PLANNING

PROCESS EVALUATION AND DECISION-MAKING PROCESS

- Is the part producible?
- Which processes are necessary?
- How many operations and die stages are required?
- Is the integration of a subsequent process possible?
- How important are material costs and savings?
- Targeted production costs per part?
 - Hand operated or automated production?
 - Transfer or ProgDie process?

Part

Output Efficiency

STEP 2: CALCULATION OF THE REQUIRED PRESS FORCE

4	A	В		С	D	E	F	G	Н
Formin	g force	•	'					-	
	•							3	
-									12 02 2013
									12.02.2013
custome	r			X	(Z				
part	-			samp	e part				_
process				tran	sfer				
part / stro	oke			1	1				
0 size		L x B x H [mm]		900 x 9	00 x 50				
1 material				DC	:04				
2 tensile st	trength	Rm [N/mm ²]		35	50				
3 code mai	terial	St - Eingabe "ST" hochfestes Mat Eingabe "X" AL - Eingabe "AL" sonst.Nichteisenm. Eingabe "NE"		S	т				
4 thicknes	S	s [mm]		1	.5				
5 safty fact	tor calculation			1	2				
6		I			-				
7				OP10	OP20	OP30	OP40	OP50	
8	drawing force	Fz _{ges} [kN]		1680					
9	cutting force	Fs _{ges} [kN]					1092	1470	
0	bending force	Fb _{ges} [kN]							
1	coining force	F _{cges} [kN]			1356				
.2	∑forming force	Fu [kN]		1680	1356	0	1092	1470	
23 spring force	e / blank holder force * safty factor	F _F [kN]		605	163	0	131	176	∑spring+blankholder force
4 forming	g force * safty factor	Faes [kN]		2016	1822	0	1468	1976	1075
5 start forn	ning	[mm]		10	2	0	5	5	15
6 stop forn	ning	[mm]		0	0	0	3,5	3,5	0
.7	_								
8 15 bdc		spring force F _F		1075	kN]			
9 10 bdc		F⊧ + OP10		3091	kN	1	N		
		F _F + OP10 + OP40 + OP50		8357	kN				
0 5 bdc							\rightarrow	VIAY	nrace to
0 5 bdc 1 3,5 bdc		F _F + OP10 + OP40 + OP50		8357	kN			HUA	
5 bdc 3,5 bdc 2 2 bdc		F _F + OP10 + OP40 + OP50 F _F + OP10 + OP20	l	8357 4913	kN kN		\sim	νιαλι	pic33 10

© COPYRIGHT SCHULER PRESSES – BU INDUSTRY

Support Part Output Efficiency

STEP 3: DIFFERENT PRODUCTION PROCESSES

① Hand operated

② ProgDie process

③ Transfer process

Part

Support

Efficiency Output

STEP 3: DIFFERENT PRODUCTION PROCESSES (CONVENTIONAL PRESS)

	Hand operated	2 ProgDie	3 Transfer
Estimated Output in spm (Basis: Conventional presses)	4	25	20
Number of presses	5 (each operation)	1	1
Production quantity per year		500.000 piece	
Availability in %	70	80	80
Shifts per day	2	2	2
Production days	149	26	32,5
One time investment costs	+	-	
Material savings	++	-	++
Personnel costs		+	+
Maintenance costs	-	+	+
Die change time	-	++	+
Result	-	++	+
Aug 19th 2016 Part Analysis and part Cost		C	COPYRIGHT SCHULER PRESSES

Aug 19th 2016 Part Analysis and part Cost

Support Part Output Efficiency

STEP 4: CALCULATION – MATERIAL COSTS PER PART (CONVENTIONAL PRESS)

	Hand operated	ProgDie	③ Transfer			
Material costs per ton	\$750					
Feed length	1100 (Blanking operation)	1100	1100			
Part weight – Gross	1,25	1,38	1,25			
Part weight – Net	1,163	1,163	1,163			
Cuttings & Scrap material	7%	19%	7%			
Quantity Parts per / t.	800 piece	724 piece	800 piece			
Material costs per Part	\$ 0,93	\$ 1,04	\$ 0,93			
Anual savings on production of 500.000 units	\$ 55,000		\$ 55,000			

Savings per year for 6 Parts with 500.000 pieces per year each = ~ \$ 330.000

Part

Support

Output Efficiency

STEP 5: CALCULATION - PRODUCTION COSTS PER PART – CONVENTIONAL PRESS

	 Hand operated 	ProgDie	3 Transfer
Estimated Stroke rate	4	25	20
Production quantity		500.000 piece	
Working days per year	149	26	32,5
Shifts per year	298	52	65
Availability in %	70	80	80
Production costs per Part Invest-& Fix-& Variable-Costs	\$ 0,32	\$ 0,14	\$ 0,17
Material costs per Part	\$ 0,93	\$ 1,04	\$ 0,93
Costs per Part	\$ 1,25	\$ 1,18	\$ 1,10
Savings per– 6 to 2			\$ 40.000

Annual Savings from Prog Die to Transfer for 6 Parts with 500.000 pieces = ~ \$ 240.000

HOW TO INCREASE RETURN WITH SERVO

BY IMPROVING :

- SELECTION OF BEST PROCESSES
- OPTIMIZED DIE AND TOOL DESIGN
- INCREASER OUTPUT SPEED
- REDUCE MAINTENANCE COSTS
- LOWER ENERGY CONSUMPTION

- OPTIMIZED AND SHORTEN DIE CHANGE TIMES
- LESS COSTS FOR PERSONNEL
- INCREASE IN OEE (OVERALL
 EQUIPMENT EFFECTIVENESS)

Support

Output Efficiency

RETURN ON INVESTMENT CONSIDERATIONS

MAIN STEPS

1. INVEST COSTS

Part

- a) Press
- b) Coil line
- c) Transfer
- d) Additional Equipement

3. FIX COSTS

- a) Costs for Used Area
- b) Crane Costs
- c) Forklift & Logistics
- d) Number of write-off years interest rate
- e) Machine-indepentent burden costs

2. VARIABLE COSTS

- a) Labor Costs
- b) Maintenance Costs
- c) Energy Consumption

4. **PRODUCTIVITY INPUTS**

- a) Number of productive days
- b) Number of productive hours each day
- c) Plant availability
- d) Overall Equipment Efficency (OEE)
- e) Stroke rate production SPM (result of part calculation)

Support Part Output Efficiency

STEP 6: OUTPUT OPTIMIZATION - SERVO PRESS AND TRANSFER MOVEMENT

© COPYRIGHT SCHULER PRESSES - BU INDUSTRY Part

Support

Output Efficiency

STEP 7: CALCULATION - PRODUCTION COSTS PER PART

	 Conventional Transfer 	3 Tra	Servo ansfer	Reve ac	enue out of dditional oduction
Actual parts study result in SPM	20		32		
Annual Production 3Sft., 7Hr, 6Dy	2,419,200	3,	870,720		
Real production time	80%	8	35%		
Annual production capacity	1,935,360	3,2	90,112		
Production guantity	500,000	50	0,000		
Working days	20		12		
Production costs per part Invest- & Fix- & Variable-Costs	\$ 0.17	\$	0.11		
Savings with Servo Press based up 12 days production		\$	30,000		
Savings for 6 parts based up 72 days production		\$	180,000		
Additional Parts Produced with Servo during the rest of year				1	,354,752
Percentage more with Servo					70%
Net revenue per part				\$	0.12
Extra revenue for parts produced				\$	162,570
Additional Annual Return On Investment with servo press				\$	342,570

Having flexible Schuler Servo Press which enables you to select the most cost efficient process Progdie or Transfer - Addition Return on Investment \$342,570 x 5 yr = \$1,712,850 Part

Support

Output Efficiency

POTENTIAL: RATIONALISATION OPPORTUNITIES

BUSINESS CASE: ONE SCHULER SERVO PRESS REPLACES TWO EXISTING CONVENTIONAL MECHANICAL PRESSES

CONSIDERABLY HIGHER PRODUCTION FLEXIBILITY

➡LESS PRODUCTION PERSONNEL

➡REDUCED SPACE REQUIREMENTS

➡LESS UNPLANNED STANDSTILLS COMBINED WITH CONSIDERABLY REDUCED REPAIR AND MAINTENANCE COST

CONSIDERABLY INCREASED COMPETITIVENESS FOR THE ACQUISITION OF NEW ORDERS

SCHULER AS PARTNER FOR SUCCESS IS IN THE FUTURE.

ServoDirect Technology

THANK YOU, FOR YOUR KIND ATTENTION!