

3D Printed Tools: Opportunities and Limitations of an Emerging Capability

Alan Munday, Manager–North America, Ricardo Strategic Consulting

© Ricardo plc 2016

Delivering Excellence Through Innovation & Technology

www.**ricardo**.com

Agenda

- Project: Reducing Automotive CAPEX Entry Barriers through Design, Manufacturing and Materials
- Corolla vs. BMW i3 (lightweighting and low volume cost reduction)
- 3D printing: What are we talking about?
- 3D printing techniques, application limitations and imminent opportunities
 - Directed energy (e-beam, laser, arc) metals
 - Powder bed metals, polymers, ceramics
- Case study die analysis (WAAM)
- Outlook or further research (materials, process parameters, software)

RICARDO

Industry structure of vehicle manufacturers and automotive suppliers

Vehicle Manufacturers

Suppliers

Source: Ricardo analysis

Thermoeconomic's is being used to optimize manufacturing costs

Economics continues to push for light weighting.. but why?

EPA estimated fuel economy mpg:

- 2014: 18 city/22 hwy/18 combined
- 2016: 19 city/26 hwy/22 combined

18% improvement

\$22,000 per kg

SpaceX Flacon Heavy ~\$11,000 per kg

© Ricardo plc 2016

Impact of light-weight design and low production volumes on manufacturing cost – BMW i3 and Toyota Corolla

- CAFE fuel economy standards and are driving need to reduce vehicle weight
- Light-weight materials are changing OEM's approaches to tooling

Objectives:

- Evaluate cost effectiveness of in-production light-weight design
- Identify best practices in light-weighting and opportunities for capital cost reduction

Barriers to Entry in Automotive Production and Opportunities with Emerging Additive Manufacturing Techniques Authors: Piyush Bubna (Ricardo), Michael P. Humbert (UTRC), Marc Wiseman(Ricardo), Enrico Manes(UTRC)

Infineon

16 May 2016

Estimated tooling investment for automotive sub-assemblies

© Ricardo plc 2016

7

Toyota Corolla and BMW i3 material usage and annual sales volume

% Material Distribution in Body In White

Infineon

Cost estimation

The virtual factory can be setup differently for various production volumes

What can 3D printing do for you?

Lightweighting - Exergy

The art of placing the minimum amount of the right material in the volume to achieve form, fit and function

3D printing is not new endeavor – principle found in nature

RICARDO

The basic principles of additive manufacturing has been at play for millennium

SEDIMENTARY ROCK FORMATION

SEDIMENTARY ROCK

METAMORPHIC ROCK FORMATION

Even creatures get in on the act

- Crustaceans
 - Oysters
 - Clams
 - Snails

Precision placement of materials is seen in beehives

Bees – Direct energy approach

Directed Energy Deposition - wire feed electron beam

- Sciaky electron beam wire feed
 - High deposition rate
 - > 10 pounds per hour
 - Well suited to large structures
 - Titanium, tool steel and stainless steel
 - Requires a high quality vacuum as the operating atmosphere

This Component is 22 Inches in Diameter and 12 inches Tall.

Pictures of the Successive Building of an EB Wire-Feed INCO 718 Deposited Engine Case.

Directed Energy Deposition - wire feed electron beam

Sciaky

3D printing techniques, application limitations and imminent opportunities

Directed Energy Deposition – wire arc welding

- Lower cost than laser and electron beam systems, but typically produces lower quality deposits
- Integrated industrial welding robots and setups are very cost effective

Thermal stress management

0.6 metre x 0.6 metre titanium frame for BAE Systems http://waammat.com/about/demo-parts

Materials Science and Technology http://www.tandfonline.com/doi/pdf/10.1179/1743284715Y.0000000073

3D printing techniques, application limitations and imminent opportunities

Additive manufacturing technologies speed vs detail vs capital cost

3D printed dies: Approaches to low volume manufacturing

The tool making challenge for hot forming Boron steel

- Lower production volumes
- More capabilities
- Shorter lead times
- Lower cost
- 3D geometry

3D printed dies: Approaches to low volume manufacturing

Door Skin Tooling – Conventional Stamping Dies

- Stamping of the front door outer skin is completed in 4 stations:
- 1. Blanking one die set (\$40k)
- 2. Forming one die set (\$125k)
- 3. Trim + pierce one die set (\$75k)
- 4. Check fixturing/gauges (\$7.5k)
- TOTAL COST TO MANUFACTURE ~ \$0.25 million
- Durability 1.5 million hit durability (tool steel)
 - Capable of 300,000 per annum volume for 5 years without being replaced

Teardown Images: Courtesy of A2MAC1 LLC

Front Door Tooling – Additive 'A' surface form die

- Part dimensions are 1.13 m x 0.74 m x 0.1 m depth of draw
 - Plate dimensions (each) are 1.43 m x 1.04 m x 0.15 m (15% increase)
- Volume of material added to each die:
 - Assume equal distribution between male and female die
 - 54,000 cm³ added to plate for each die (587.4 kg)

- Cost: WAAM machine (\$20.16/hour) Material (\$33.00/hour)
- Total cost for the Forming die set \$100,000
- Conventional Stamping die set costs \$125,000 to manufacture

20% cost savings

Material Jetting Technologies

Binder jetting creates casting cores and molds

Thank You

3D Printed Tools: Opportunities and Limitations of an Emerging Capability

Alan Munday, Manager–North America, Ricardo Strategic Consulting

© Ricardo plc 2016

Delivering Excellence Through Innovation & Technology

www.**ricardo**.com

Front Door Tooling - Additive

Cost to use WAAM machine is \$20.16/hour

Front Door Tooling - Additive

Cost of heat	treatment		
	Final die weight (kg)		2349
	Heat treat cost (\$/kg)		\$2.2
	Total cost		\$5,10
	Cycle time (h)		13.0
Cost of polis	hing		
	Surface area to geometric area ratio		1
	Approximate die surface area (cm^2)		223
	Polishing time (h)		371
	Polishing cost (\$/hr)		\$45.0
	Total cost		\$16,7
Total cost		Cycle time	Cost
	Material cost		\$14,054
	Additive cost/cycle time	339.3	\$6,840
	Finish machining cost/cycle time	71.5	\$7,154
	Heat treatment cost/cycle time	13.0	\$5,169
	Polishing cost/cycle time	371.8	\$16,731
	Total cost/cycle time for making die	795.6	\$49,948

- Total cost for a male OR female die is \$49,948
- Forming die set costs \$99,896
- A traditionally manufactured die set costs \$125,000 to manufacture
 - 20% cost savings