

Forming Limits and Strain Analysis

Daniel J. Schaeffler, Ph.D.

President, Engineering Quality Solutions, Inc., www.EQSgroup.com Chief Content Officer, 4M Partners, LLC, www.Learning4M.com May 2017

Tensile testing is fast, easy, and well understood.

Characterizes sheet metal

The major strain is always positive, and always greater than the minor strain.

Characterizing Part Formability with Tensile Testing

Each Sheet Metal Grade and Thickness has its own Forming Limit Curve

Each Sheet Metal Grade and Thickness has its own Forming Limit Curve

Forming Limit Curves are a MATERIAL Property

A unique curve shape and location can be produced for Every sheet metal type (aluminum, stainless, copper, etc.) Every sheet metal grade (AA6061, AA6111, AA6022, etc.) Every sheet metal supplier (Arconic, Novelis, Aleris...)

Except...

 $FLC_{o} = (23.3 + 14.2*t) * (n/0.21)$ [t = sheet thickness in millimeters]

 $FLC_{o} = (23.3 + 360*t) * (n/0.21)$ [t = sheet thickness in inches]

Include FLC in Virtual Forming

Is this good enough for tooling development and buyoff?

Many assumptions:

- known friction
- uniform friction
- ideal mechanical properties
- ideal draw bead representation
- no effect of surface roughness
- no effect of die material, die coating or wear

Each grade has a range of normal properties

- Specification requires yield strength between 210 MPa and 300 MPa
 - (30,500 psi to 43,500 psi or 30.5 ksi to 43.5 ksi)
- During development, you receive sheet metal with 220 MPa Yield Strength
- During production, you receive sheet metal with 290 MPa Yield Strength
- Both are within specification and are within normal range for the grade

Tooling must be sufficiently robust to handle this normal range.

Determining if Tooling Can Produce Good Parts over Range of Material Properties

Hands-on manual and optical (non-contact) strain analysis

- Thickness Strain Analysis
- Circle Grid Strain Analysis
- Square Grid Strain Analysis

Split-free panels over entire property range?

What if?

- Thicker (better formability) or thinner (lighter/cheaper)
- Less formable grade (cheaper)

Troubleshooting

Reference panel documentation

Statistical Process Control

- Should be done on all parts.
 - Rapid
- Limited training needed
- If passing thinning strain analysis, then by default it will pass grid strain analysis
- Even if a part fails thinning strain analysis, it may still pass square/circle grid analysis
 - You will not know this until a square / circle grid strain analysis is done.

Hands-on manual and optical (non-contact) strain analysis

- Thickness Strain Analysis
- Circle Grid Strain Analysis
- Square Grid Strain Analysis

Take blank off lift

Clean off residual oil

Electrochemically etch surface with grid pattern

Reapply lube

Draw Deformation

Negative minor strain

Circle diameter is greater than the ellipse minor axis

Plane Strain Deformation

Zero minor strain

Circle diameter is equal to the ellipse minor axis

Stretch Deformation

Positive minor strain

Circle diameter is less than the ellipse minor axis

FLC_o= (23.3 + 14.2*t) * (n/0.21)

$$(e_{Ma} + 1) * (e_{mi} + 1) * (e_{t} + 1) = 1$$

To pass thinning strain analysis, all locations must have thinning strains lower than the bottom dashed line.

For minor strains at zero or negative, the part will pass if thinning strain is less than 29%. [this example only]

For positive minor strains, the threshold is > 29%.

Most conservative: Use max 29% for all minor strains.

• If thinning <29% at all areas, then the part is safe. No grid analysis is needed. Thinning analysis alone is sufficient.

What if part thins by more than 29% and there are positive minor strains? This is the case that square or circle grid analysis is best used for.

Grid Strain Analysis (Square or Circle) vs Thinning Strain Analysis

Must interrupt the normal process flow.

• Take blank off stack. Clean off residual oil. Electrochemically etch surface. Reapply lube in the same manner/quantity/distribution.

Measurement error possibility

- The template/stencil has a 2% error maximum in it.
- The thickness of the etched line that makes up the perimeter of the circle is close to the thickness of the line that makes up the diverging lines of the calibrated Mylar scale (the railroad tracks)
- Lighting/parallax can influence the reading

Significantly more time consuming in grid application & strain analysis.

But... you lose "bonus zone" on the RH side (positive minor strains).

10% minor strain

60% major strain

Measuring Strains: Calibrated Mylar Strip

Wrong – diverging scale lines are inside the ellipse etched lines

Wrong – diverging scale lines are outside the ellipse etched lines

Wrong – diverging scale lines are not perpendicular to the minor axis

Correct – proper position on the diverging scale lines to the minor axis and the ellipse etched line

Circle Grid Strain Analysis

Must use proper technique to get accurate result

Cir Mu

Circle Grid Strain Analysis

Must use proper technique to get accurate result

$$(e_{Ma} + 1) * (e_{mi} + 1) * (e_{t} + 1) = 1$$
, or $e_{t} = \frac{1}{(e_{Ma} + 1) * (e_{mi} + 1)} - 1$

-

Thinning strain (%) =
$$e_t = \frac{\text{formed part thickness} - \text{initial blank thickness}}{\text{initial blank thickness}} * 100\%$$

Same math and science as circle grid strain analysis • Still need clean/crisp grid pattern

Main difference is cameras instead of eyes

- Full field (some)
- Objective
- Accurate

Need to know where to look

Multiple Images needed to blanket part

Image from www.Shiloh.com

Forming Limit Curve – Forming Limit Diagram

FLC – Dependent on sheet metal grade ō **Failure Zone** 50 Major Strain (%) 40 Margina Zone 30 Safe Zone 20 10 0 -15 -10 -5 Δ 5 10 Minor Strain (%)

Measured strains - Dependent on stamping process, part design, and metal flow (radii, beads, lubricant...) 50 Major Strain (%) 40 30 F A EĎB 20 10 0 -5 -15 -10 0 5 10 Minor Strain (%)

Forming Limit Curve – Forming Limit Diagram

FLC – Dependent on sheet metal grade ō **Failure Zone** 50 Major Strain (%) 40 Margina Zone 30 Safe Zone 20 10 0 -15 -10 -5 Δ 5 10 Minor Strain (%)

Measured strains - Dependent on stamping process, part design, and metal flow (radii, beads, lubricant...) 50 Major Strain (%) 40 30 F A EĎB 20 10 0 -5 -15 -10 0 5 10 Minor Strain (%)

What is the grid strain analysis on this part formed today telling us?

	actual properties		
marker in FLD			
n-value	0.23		
initial thickness (mm)	0.895		
FLDo (%)	38.9		
% thinning	28.0		
thin - out limit (mm)	0.644		

H	Major	Minor	Thickne	ss Strain	Actual Props		
Locatio	Strain (%)	Strain	Gauge (mm)	Thinning (%)	Safety (%)	Status	
A	28	2	0.686	23	12	safe	
В	22	2	0.719	20	18	safe	
С	17	0	0.765	15	22	safe	
D	23	1	0.720	20	17	safe	
E	23	0	0.728	19	16	safe	
F	28	6	0.660	26	15	safe	
G	36	0	0.658	26	3	marginal	
J	32	0	0.678	24	7	marginal	
K	21	2	0.725	19	19	safe	
L	25	1	0.709	21	15	safe	
M	30	0	0.688	23	9	marginal	

Area G needs some work, and areas J and M could use some touchup to get slightly better metal flow. Probably not too much effort needed.

What if worst case properties are used?

	actual properties	worst case scenario		
marker in FLD				
n-value	0.23	0.21		
initial thickness (mm)	0.895	0.889		
FLDo (%)	38.9	35.5		
% thinning	28.0	26.2		
thin - out limit (mm)	0.644	0.656		

E Major		Major Minor		Thickness Strain		Actual Props		Worst Case Props	
cati	Strain	Strain Strain	Gauge	Thinning	Safety	Status	Safety	Status	
P	(%)	(%)	(mm)	(%)	(%)		(%)		
A	28	2	0.686	23	12	safe	9	marginal	
В	22	2	0.719	20	18	safe	15	safe	
С	17	0	0.765	15	22	safe	18	safe	
D	23	1	0.720	20	17	safe	13	safe	
E	23	0	0.728	19	16	safe	12	safe	
F	28	6	0.660	26	15	safe	11	safe	
G	36	0	0.658	26	3	marginal	-1	failure	
J	32	0	0.678	24	7	marginal	3	marginal	
K	21	2	0.725	19	19	safe	16	safe	
L	25	1	0.709	21	15	safe	11	safe	
Μ	30	0	0.688	23	9	marginal	5	marginal	

The part/process/sheet metal is NOT robust! Must have all strains below the lowest line... Do not buy off tools yet!

For more information, please visit

www.Learning4M.com

Or write us at

4M@Learning4M.com

Or

EQS@EQSgroup.com